exact solutions of the generalized kuramoto-sivashinsky equation

نویسندگان

c.m. khalique

چکیده

in this paper we obtain  exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    the methods used  to determine the exact solutions of the underlying equation are the lie group analysis  and the simplest equation method. the solutions obtained are  then plotted.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. We study the emergence of pattern formation and chaotic dynamics in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a ...

متن کامل

Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation

We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...

متن کامل

Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in R

Motivated by the work of Foias and Temam [C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989) 359–369], we prove the existence and Gevrey regularity of local solutions to the Kuramoto–Sivashinsky equation in Rn with initial data in the space of distributions. The control on the Gevrey norm provides an explicit estimate of the a...

متن کامل

Feedback control of the Kuramoto – Sivashinsky equation

This work focuses on linear finite-dimensional output feedback control of the Kuramoto–Sivashinsky equation (KSE) with periodic boundary conditions. Under the assumption that the linearization of the KSE around the zero solution is controllable and observable, linear finite-dimensional output feedback controllers are synthesized that achieve stabilization of the zero solution, for any value of ...

متن کامل

Inertial Manifolds for the Kuramoto-sivashinsky Equation

A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
caspian journal of mathematical sciences

ناشر: university of mazandaran

ISSN 1735-0611

دوره 1

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023